Histone variant H3.3 maintains a decondensed chromatin state essential for mouse preimplantation development.

نویسندگان

  • Chih-Jen Lin
  • Marco Conti
  • Miguel Ramalho-Santos
چکیده

Histone variants can replace canonical histones in the nucleosome and modify chromatin structure and gene expression. The histone variant H3.3 preferentially associates with active chromatin and has been implicated in the regulation of a diverse range of developmental processes. However, the mechanisms by which H3.3 may regulate gene activity are unclear and gene duplication has hampered an analysis of H3.3 function in mouse. Here, we report that the specific knockdown of H3.3 in fertilized mouse zygotes leads to developmental arrest at the morula stage. This phenotype can be rescued by exogenous H3.3 but not by canonical H3.1 mRNA. Loss of H3.3 leads to over-condensation and mis-segregation of chromosomes as early as the two-cell stage, with corresponding high levels of aneuploidy, but does not appear to affect zygotic gene activation at the two-cell stage or lineage gene transcription at the morula stage. H3.3-deficient embryos have significantly reduced levels of markers of open chromatin, such as H3K36me2 and H4K16Ac. Importantly, a mutation in H3.3K36 that disrupts H3K36 methylation (H3.3K36R) does not rescue the H3.3 knockdown (KD) phenotype. In addition, H3.3 KD embryos have increased incorporation of linker H1. Knockdown of Mof (Kat8), an acetyltransferase specific for H4K16, similarly leads to excessive H1 incorporation. Remarkably, pan-H1 RNA interference (RNAi) partially rescues the chromosome condensation of H3.3 KD embryos and allows development to the blastocyst stage. These results reveal that H3.3 mediates a balance between open and condensed chromatin that is crucial for the fidelity of chromosome segregation during early mouse development.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Accumulation of histone variant H3.3 with age is associated with profound changes in the histone methylation landscape

Deposition of replication-independent histone variant H3.3 into chromatin is essential for many biological processes, including development and reproduction. Unlike replication-dependent H3.1/2 isoforms, H3.3 is expressed throughout the cell cycle and becomes enriched in postmitotic cells with age. However, lifelong dynamics of H3 variant replacement and the impact of this process on chromatin ...

متن کامل

Genetic mosaics and time-lapse imaging identify functions of histone H3.3 residues in mouse oocytes and embryos.

During development from oocyte to embryo, genetic programs in mouse germ cells are reshaped by chromatin remodeling to orchestrate the onset of development. Epigenetic modifications of specific amino acid residues of core histones and their isoforms can dramatically alter activation and suppression of gene expression. H3.3 is a histone H3 variant that plays essential roles in mouse oocytes and ...

متن کامل

Transcriptional and Developmental Functions of the H3.3 Histone Variant in Drosophila

Changes in chromatin composition accompany cellular differentiation in eukaryotes. Although bulk chromatin is duplicated during DNA replication, replication-independent (RI) nucleosome replacement occurs in transcriptionally active chromatin and during specific developmental transitions where the genome is repackaged. In most animals, replacement uses the conserved H3.3 histone variant, but the...

متن کامل

Dynamic distribution of the replacement histone variant H3.3 in the mouse oocyte and preimplantation embryos.

Upon fertilization, the gametes undergo a drastic reprogramming that includes changes in DNA methylation and histone modifications. Currently, it is not known whether replacement of the major histones by histone variants is also involved in these processes. Here we have examined the expression and localization of the histone variant H3.3 in early mouse embryogenesis. We show that H3.3 is presen...

متن کامل

Histone chaperone CAF-1 mediates repressive histone modifications to protect preimplantation mouse embryos from endogenous retrotransposons.

Substantial proportions of mammalian genomes comprise repetitive elements including endogenous retrotransposons. Although these play diverse roles during development, their appropriate silencing is critically important in maintaining genomic integrity in the host cells. The major mechanism for retrotransposon silencing is DNA methylation, but the wave of global DNA demethylation that occurs aft...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Development

دوره 140 17  شماره 

صفحات  -

تاریخ انتشار 2013